TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework using Self-Supervised Multi-Task Learning

2 Dec 2021  ·  Linhao Qu, Shaolei Liu, Manning Wang, Zhijian Song ·

In this paper, we propose TransMEF, a transformer-based multi-exposure image fusion framework that uses self-supervised multi-task learning. The framework is based on an encoder-decoder network, which can be trained on large natural image datasets and does not require ground truth fusion images. We design three self-supervised reconstruction tasks according to the characteristics of multi-exposure images and conduct these tasks simultaneously using multi-task learning; through this process, the network can learn the characteristics of multi-exposure images and extract more generalized features. In addition, to compensate for the defect in establishing long-range dependencies in CNN-based architectures, we design an encoder that combines a CNN module with a transformer module. This combination enables the network to focus on both local and global information. We evaluated our method and compared it to 11 competitive traditional and deep learning-based methods on the latest released multi-exposure image fusion benchmark dataset, and our method achieved the best performance in both subjective and objective evaluations.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here