Triplet Similarity Embedding for Face Verification

10 Feb 2016  ·  Swami Sankaranarayanan, Azadeh Alavi, Rama Chellappa ·

In this work, we present an unconstrained face verification algorithm and evaluate it on the recently released IJB-A dataset that aims to push the boundaries of face verification methods. The proposed algorithm couples a deep CNN-based approach with a low-dimensional discriminative embedding learnt using triplet similarity constraints in a large margin fashion. Aside from yielding performance improvement, this embedding provides significant advantages in terms of memory and post-processing operations like hashing and visualization. Experiments on the IJB-A dataset show that the proposed algorithm outperforms state of the art methods in verification and identification metrics, while requiring less training time.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here