Two Routes to Scalable Credit Assignment without Weight Symmetry

28 Feb 2020Daniel KuninAran NayebiJavier Sagastuy-BrenaSurya GanguliJonathan M. BloomDaniel L. K. Yamins

The neural plausibility of backpropagation has long been disputed, primarily for its use of non-local weight transport $-$ the biologically dubious requirement that one neuron instantaneously measure the synaptic weights of another. Until recently, attempts to create local learning rules that avoid weight transport have typically failed in the large-scale learning scenarios where backpropagation shines, e.g. ImageNet categorization with deep convolutional networks... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet