Two-Stream Boosted TCRNet for Range-Tolerant Infra-Red Target Detection

The detection of vehicular targets in infra-red imagery is a challenging task, both due to the relatively few pixels on target and the false alarms produced by the surrounding terrain clutter. It has been previously shown [1] that a relatively simple network (known as TCRNet) can outperform conventional deep CNNs for such applications by maximizing a target to clutter ratio (TCR) metric. In this paper, we introduce a new form of the network (referred to as TCRNet-2) that further improves the performance by first processing target and clutter information in two parallel channels and then combining them to optimize the TCR metric. We also show that the overall performance can be considerably improved by boosting the performance of a primary TCRNet-2 detector, with a secondary network that enhances discrimination between targets and clutter in the false alarm space of the primary network. We analyze the performance of the proposed networks using a publicly available data set of infra-red images of targets in natural terrain. It is shown that the TCRNet-2 and its boosted version yield considerably better performance than the original TCRNet over a wide range of distances, in both day and night conditions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here