Two-Target Algorithms for Infinite-Armed Bandits with Bernoulli Rewards

NeurIPS 2013  ·  Thomas Bonald, Alexandre Proutiere ·

We consider an infinite-armed bandit problem with Bernoulli rewards. The mean rewards are independent, uniformly distributed over $[0,1]$. Rewards 0 and 1 are referred to as a success and a failure, respectively. We propose a novel algorithm where the decision to exploit any arm is based on two successive targets, namely, the total number of successes until the first failure and the first $m$ failures, respectively, where $m$ is a fixed parameter. This two-target algorithm achieves a long-term average regret in $\sqrt{2n}$ for a large parameter $m$ and a known time horizon $n$. This regret is optimal and strictly less than the regret achieved by the best known algorithms, which is in $2\sqrt{n}$. The results are extended to any mean-reward distribution whose support contains 1 and to unknown time horizons. Numerical experiments show the performance of the algorithm for finite time horizons.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here