Uncertainty-Aware Cascaded Dilation Filtering for High-Efficiency Deraining

7 Jan 2022  ·  Qing Guo, Jingyang Sun, Felix Juefei-Xu, Lei Ma, Di Lin, Wei Feng, Song Wang ·

Deraining is a significant and fundamental computer vision task, aiming to remove the rain streaks and accumulations in an image or video captured under a rainy day. Existing deraining methods usually make heuristic assumptions of the rain model, which compels them to employ complex optimization or iterative refinement for high recovery quality. This, however, leads to time-consuming methods and affects the effectiveness for addressing rain patterns deviated from from the assumptions. In this paper, we propose a simple yet efficient deraining method by formulating deraining as a predictive filtering problem without complex rain model assumptions. Specifically, we identify spatially-variant predictive filtering (SPFilt) that adaptively predicts proper kernels via a deep network to filter different individual pixels. Since the filtering can be implemented via well-accelerated convolution, our method can be significantly efficient. We further propose the EfDeRain+ that contains three main contributions to address residual rain traces, multi-scale, and diverse rain patterns without harming the efficiency. First, we propose the uncertainty-aware cascaded predictive filtering (UC-PFilt) that can identify the difficulties of reconstructing clean pixels via predicted kernels and remove the residual rain traces effectively. Second, we design the weight-sharing multi-scale dilated filtering (WS-MS-DFilt) to handle multi-scale rain streaks without harming the efficiency. Third, to eliminate the gap across diverse rain patterns, we propose a novel data augmentation method (i.e., RainMix) to train our deep models. By combining all contributions with sophisticated analysis on different variants, our final method outperforms baseline methods on four single-image deraining datasets and one video deraining dataset in terms of both recovery quality and speed.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here