Uncertainty Quantification of Autoencoder-based Koopman Operator

18 Sep 2023  ·  Jin Sung Kim, Ying Shuai Quan, Chung Choo Chung ·

This paper proposes a method for uncertainty quantification of an autoencoder-based Koopman operator. The main challenge of using the Koopman operator is to design the basis functions for lifting the state. To this end, this paper builds an autoencoder to automatically search the optimal lifting basis functions with a given loss function. We approximate the Koopman operator in a finite-dimensional space with the autoencoder, while the approximated Koopman has an approximation uncertainty. To resolve the problem, we compute a robust positively invariant set for the approximated Koopman operator to consider the approximation error. Then, the decoder of the autoencoder is analyzed by robustness certification against approximation error using the Lipschitz constant in the reconstruction phase. The forced Van der Pol model is used to show the validity of the proposed method. From the numerical simulation results, we confirmed that the trajectory of the true state stays in the uncertainty set centered by the reconstructed state.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods