Understand Scene Categories by Objects: A Semantic Regularized Scene Classifier Using Convolutional Neural Networks

22 Sep 2015  ·  Yiyi Liao, Sarath Kodagoda, Yue Wang, Lei Shi, Yong liu ·

Scene classification is a fundamental perception task for environmental understanding in today's robotics. In this paper, we have attempted to exploit the use of popular machine learning technique of deep learning to enhance scene understanding, particularly in robotics applications. As scene images have larger diversity than the iconic object images, it is more challenging for deep learning methods to automatically learn features from scene images with less samples. Inspired by human scene understanding based on object knowledge, we address the problem of scene classification by encouraging deep neural networks to incorporate object-level information. This is implemented with a regularization of semantic segmentation. With only 5 thousand training images, as opposed to 2.5 million images, we show the proposed deep architecture achieves superior scene classification results to the state-of-the-art on a publicly available SUN RGB-D dataset. In addition, performance of semantic segmentation, the regularizer, also reaches a new record with refinement derived from predicted scene labels. Finally, we apply our SUN RGB-D dataset trained model to a mobile robot captured images to classify scenes in our university demonstrating the generalization ability of the proposed algorithm.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here