Understanding Adversarial Robustness Through Loss Landscape Geometries

22 Jul 2019  ·  Vinay Uday Prabhu, Dian Ang Yap, Joyce Xu, John Whaley ·

The pursuit of explaining and improving generalization in deep learning has elicited efforts both in regularization techniques as well as visualization techniques of the loss surface geometry. The latter is related to the intuition prevalent in the community that flatter local optima leads to lower generalization error. In this paper, we harness the state-of-the-art "filter normalization" technique of loss-surface visualization to qualitatively understand the consequences of using adversarial training data augmentation as the explicit regularization technique of choice. Much to our surprise, we discover that this oft deployed adversarial augmentation technique does not actually result in "flatter" loss-landscapes, which requires rethinking adversarial training generalization, and the relationship between generalization and loss landscapes geometries.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here