Unified, Verifiable Neural Simulators for Electromagnetic Wave Inverse Problems

31 Mar 2024  ·  Charles Dove, Jatearoon Boondicharern, Laura Waller ·

Simulators based on neural networks offer a path to orders-of-magnitude faster electromagnetic wave simulations. Existing models, however, only address narrowly tailored classes of problems and only scale to systems of a few dozen degrees of freedom (DoFs). Here, we demonstrate a single, unified model capable of addressing scattering simulations with thousands of DoFs, of any wavelength, any illumination wavefront, and freeform materials, within broad configurable bounds. Based on an attentional multi-conditioning strategy, our method also allows non-recurrent supervision on and prediction of intermediate physical states, which provides improved generalization with no additional data-generation cost. Using this O(1)-time intermediate prediction capability, we propose and prove a rigorous, efficiently computable upper bound on prediction error, allowing accuracy guarantees at inference time for all predictions. After training solely on randomized systems, we demonstrate the unified model across a suite of challenging multi-disciplinary inverse problems, finding strong efficacy and speed improvements up to 96% for problems in optical tomography, beam shaping through volumetric random media, and freeform photonic inverse design, with no problem-specific training. Our findings demonstrate a path to universal, verifiably accurate neural surrogates for existing scattering simulators, and our conditioning and training methods are directly applicable to any PDE admitting a time-domain iterative solver.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods