Unleashing the Potential of Spiking Neural Networks for Sequential Modeling with Contextual Embedding

29 Aug 2023  ·  Xinyi Chen, Jibin Wu, Huajin Tang, Qinyuan Ren, Kay Chen Tan ·

The human brain exhibits remarkable abilities in integrating temporally distant sensory inputs for decision-making. However, existing brain-inspired spiking neural networks (SNNs) have struggled to match their biological counterpart in modeling long-term temporal relationships. To address this problem, this paper presents a novel Contextual Embedding Leaky Integrate-and-Fire (CE-LIF) spiking neuron model. Specifically, the CE-LIF model incorporates a meticulously designed contextual embedding component into the adaptive neuronal firing threshold, thereby enhancing the memory storage of spiking neurons and facilitating effective sequential modeling. Additionally, theoretical analysis is provided to elucidate how the CE-LIF model enables long-term temporal credit assignment. Remarkably, when compared to state-of-the-art recurrent SNNs, feedforward SNNs comprising the proposed CE-LIF neurons demonstrate superior performance across extensive sequential modeling tasks in terms of classification accuracy, network convergence speed, and memory capacity.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here