Unmasked Teacher: Towards Training-Efficient Video Foundation Models
Video Foundation Models (VFMs) have received limited exploration due to high computational costs and data scarcity. Previous VFMs rely on Image Foundation Models (IFMs), which face challenges in transferring to the video domain. Although VideoMAE has trained a robust ViT from limited data, its low-level reconstruction poses convergence difficulties and conflicts with high-level cross-modal alignment. This paper proposes a training-efficient method for temporal-sensitive VFMs that integrates the benefits of existing methods. To increase data efficiency, we mask out most of the low-semantics video tokens, but selectively align the unmasked tokens with IFM, which serves as the UnMasked Teacher (UMT). By providing semantic guidance, our method enables faster convergence and multimodal friendliness. With a progressive pre-training framework, our model can handle various tasks including scene-related, temporal-related, and complex video-language understanding. Using only public sources for pre-training in 6 days on 32 A100 GPUs, our scratch-built ViT-L/16 achieves state-of-the-art performances on various video tasks. The code and models will be released at https://github.com/OpenGVLab/unmasked_teacher.
PDF Abstract ICCV 2023 PDF ICCV 2023 AbstractCode
Results from the Paper
Ranked #1 on Video Retrieval on SSv2-template retrieval (using extra training data)
Task | Dataset | Model | Metric Name | Metric Value | Global Rank | Uses Extra Training Data |
Benchmark |
---|---|---|---|---|---|---|---|
Video Retrieval | ActivityNet | UMT-L (ViT-L/16) | text-to-video R@1 | 66.8 | # 5 | ||
text-to-video R@5 | 89.1 | # 3 | |||||
text-to-video R@10 | 94.9 | # 3 | |||||
video-to-text R@1 | 64.4 | # 2 | |||||
video-to-text R@5 | 89.1 | # 1 | |||||
video-to-text R@10 | 94.8 | # 1 | |||||
Zero-Shot Video Retrieval | ActivityNet | UMT-L (ViT-L/16) | text-to-video R@1 | 42.8 | # 3 | ||
video-to-text R@1 | 40.7 | # 4 | |||||
text-to-video R@10 | 79.8 | # 4 | |||||
text-to-video R@5 | 69.6 | # 3 | |||||
video-to-text R@5 | 67.6 | # 5 | |||||
video-to-text R@10 | 78.6 | # 5 | |||||
Video Question Answering | ActivityNet-QA | UMT-L (ViT-L/16) | Accuracy | 47.9 | # 10 | ||
Action Recognition | AVA v2.2 | UMT-L (ViT-L/16) | mAP | 39.8 | # 8 | ||
Zero-Shot Video Retrieval | DiDeMo | UMT-L (ViT-L/16) | text-to-video R@1 | 48.6 | # 5 | ||
text-to-video R@5 | 72.9 | # 5 | |||||
text-to-video R@10 | 79.0 | # 6 | |||||
video-to-text R@1 | 49.9 | # 4 | |||||
video-to-text R@5 | 74.8 | # 4 | |||||
video-to-text R@10 | 81.4 | # 4 | |||||
Video Retrieval | DiDeMo | UMT-L (ViT-L/16) | text-to-video R@1 | 70.4 | # 5 | ||
text-to-video R@5 | 90.1 | # 2 | |||||
text-to-video R@10 | 93.5 | # 2 | |||||
video-to-text R@1 | 65.7 | # 3 | |||||
video-to-text R@10 | 93.3 | # 2 | |||||
video-to-text R@5 | 89.6 | # 2 | |||||
Action Classification | Kinetics-400 | UMT-L (ViT-L/16) | Acc@1 | 90.6 | # 7 | ||
Acc@5 | 98.7 | # 2 | |||||
Action Classification | Kinetics-400 | Unmasked Teacher (ViT-L) | Acc@1 | 90.6 | # 7 | ||
Acc@5 | 98.7 | # 2 | |||||
FLOPs (G) x views | 1434ร3ร4 | # 1 | |||||
Parameters (M) | 304 | # 26 | |||||
Action Classification | Kinetics-600 | UMT-L (ViT-L/16) | Top-1 Accuracy | 90.5 | # 8 | ||
Top-5 Accuracy | 98.8 | # 2 | |||||
Action Classification | Kinetics-700 | UMT-L (ViT-L/16) | Top-1 Accuracy | 83.6 | # 5 | ||
Top-5 Accuracy | 96.7 | # 1 | |||||
Video Retrieval | LSMDC | UMT-L (ViT-L/16) | text-to-video R@1 | 43.0 | # 3 | ||
text-to-video R@5 | 65.5 | # 2 | |||||
text-to-video R@10 | 73.0 | # 2 | |||||
video-to-text R@1 | 41.4 | # 2 | |||||
video-to-text R@5 | 64.3 | # 3 | |||||
video-to-text R@10 | 71.5 | # 2 | |||||
Zero-Shot Video Retrieval | LSMDC | UMT-L (ViT-L/16) | text-to-video R@1 | 25.2 | # 3 | ||
video-to-text R@1 | 23.2 | # 3 | |||||
text-to-video R@5 | 43.0 | # 4 | |||||
text-to-video R@10 | 50.5 | # 4 | |||||
video-to-text R@5 | 37.7 | # 3 | |||||
video-to-text R@10 | 44.2 | # 3 | |||||
Action Classification | MiT | UMT-L (ViT-L/16) | Top 1 Accuracy | 48.7 | # 3 | ||
Top 5 Accuracy | 78.2 | # 1 | |||||
Video Retrieval | MSR-VTT | UMT-L (ViT-L/16) | text-to-video R@1 | 58.8 | # 4 | ||
text-to-video R@5 | 81.0 | # 3 | |||||
text-to-video R@10 | 87.1 | # 4 | |||||
video-to-text R@1 | 58.6 | # 5 | |||||
video-to-text R@5 | 81.6 | # 4 | |||||
video-to-text R@10 | 86.5 | # 5 | |||||
Zero-Shot Video Retrieval | MSR-VTT | UMT-L (ViT-L/16) | text-to-video R@1 | 42.6 | # 7 | ||
text-to-video R@5 | 64.4 | # 8 | |||||
text-to-video R@10 | 73.1 | # 8 | |||||
video-to-text R@1 | 38.6 | # 5 | |||||
video-to-text R@5 | 59.8 | # 5 | |||||
video-to-text R@10 | 69.6 | # 5 | |||||
Visual Question Answering (VQA) | MSRVTT-QA | UMT-L (ViT-L/16) | Accuracy | 0.471 | # 6 | ||
Zero-Shot Video Retrieval | MSVD | UMT-L (ViT-L/16) | text-to-video R@1 | 49.0 | # 6 | ||
video-to-text R@1 | 74.5 | # 4 | |||||
text-to-video R@5 | 76.9 | # 6 | |||||
text-to-video R@10 | 84.7 | # 8 | |||||
video-to-text R@5 | 89.7 | # 6 | |||||
video-to-text R@10 | 92.8 | # 6 | |||||
Visual Question Answering (VQA) | MSVD-QA | UMT-L (ViT-L/16) | Accuracy | 0.552 | # 13 | ||
Video Retrieval | SSv2-label retrieval | UMT-L (ViT-L/16) | text-to-video R@1 | 73.3 | # 1 | ||
text-to-video R@5 | 92.7 | # 2 | |||||
text-to-video R@10 | 96.6 | # 1 | |||||
Video Retrieval | SSv2-template retrieval | UMT-L (ViT-L/16) | text-to-video R@1 | 90.8 | # 1 | ||
text-to-video R@5 | 100.0 | # 1 | |||||
text-to-video R@10 | 100.0 | # 1 | |||||
Video Retrieval | VATEX | Unmasked Teacher | text-to-video R@1 | 72 | # 4 | ||
text-to-video R@10 | 97.8 | # 3 | |||||
video-to-text R@1 | 86.0 | # 3 | |||||
video-to-text R@10 | 99.6 | # 1 | |||||
text-to-video R@5 | 95.1 | # 4 |