Unraveling Social Perceptions & Behaviors towards Migrants on Twitter

4 Dec 2021  ·  Aparup Khatua, Wolfgang Nejdl ·

We draw insights from the social psychology literature to identify two facets of Twitter deliberations about migrants, i.e., perceptions about migrants and behaviors towards mi-grants. Our theoretical anchoring helped us in identifying two prevailing perceptions (i.e., sympathy and antipathy) and two dominant behaviors (i.e., solidarity and animosity) of social media users towards migrants. We have employed unsuper-vised and supervised approaches to identify these perceptions and behaviors. In the domain of applied NLP, our study of-fers a nuanced understanding of migrant-related Twitter de-liberations. Our proposed transformer-based model, i.e., BERT + CNN, has reported an F1-score of 0.76 and outper-formed other models. Additionally, we argue that tweets con-veying antipathy or animosity can be broadly considered hate speech towards migrants, but they are not the same. Thus, our approach has fine-tuned the binary hate speech detection task by highlighting the granular differences between perceptual and behavioral aspects of hate speeches.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods