Using machine learning to speed up new and upgrade detector studies: a calorimeter case

11 Mar 2020  ·  F. Ratnikov, D. Derkach, A. Boldyrev, A. Shevelev, P. Fakanov, L. Matyushin ·

In this paper, we discuss the way advanced machine learning techniques allow physicists to perform in-depth studies of the realistic operating modes of the detectors during the stage of their design. Proposed approach can be applied to both design concept (CDR) and technical design (TDR) phases of future detectors and existing detectors if upgraded. The machine learning approaches may speed up the verification of the possible detector configurations and will automate the entire detector R\&D, which is often accompanied by a large number of scattered studies. We present the approach of using machine learning for detector R\&D and its optimisation cycle with an emphasis on the project of the electromagnetic calorimeter upgrade for the LHCb detector\cite{lhcls3}. The spatial reconstruction and time of arrival properties for the electromagnetic calorimeter were demonstrated.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods