Using Subobservers to Synthesize Opacity-Enforcing Supervisors

In discrete-event system control, the worst-case time complexity for computing a system's observer is exponential in the number of that system's states. This results in practical difficulties since some problems require calculating multiple observers for a changing system, e.g., synthesizing an opacity-enforcing supervisor. Although calculating these observers in an iterative manner allows us to synthesize an opacity-enforcing supervisor and although methods have been proposed to reduce the computational demands, room exists for a practical and intuitive solution. Here we extend the subautomaton relationship to the notion of a subobserver and demonstrate its use in reducing the computations required for iterated observer calculations. We then demonstrate the subobserver relationship's power by simplifying state-of-the-art synthesis approaches for opacity-enforcing supervisors under realistic assumptions.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here