Variational Pretraining for Semi-supervised Text Classification

We introduce VAMPIRE, a lightweight pretraining framework for effective text classification when data and computing resources are limited. We pretrain a unigram document model as a variational autoencoder on in-domain, unlabeled data and use its internal states as features in a downstream classifier. Empirically, we show the relative strength of VAMPIRE against computationally expensive contextual embeddings and other popular semi-supervised baselines under low resource settings. We also find that fine-tuning to in-domain data is crucial to achieving decent performance from contextual embeddings when working with limited supervision. We accompany this paper with code to pretrain and use VAMPIRE embeddings in downstream tasks.

PDF Abstract ACL 2019 PDF ACL 2019 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods