Vector-Valued Graph Trend Filtering with Non-Convex Penalties

29 May 2019  ·  Rohan Varma, Harlin Lee, Jelena Kovačević, Yuejie Chi ·

This work studies the denoising of piecewise smooth graph signals that exhibit inhomogeneous levels of smoothness over a graph, where the value at each node can be vector-valued. We extend the graph trend filtering framework to denoising vector-valued graph signals with a family of non-convex regularizers, which exhibit superior recovery performance over existing convex regularizers. Using an oracle inequality, we establish the statistical error rates of first-order stationary points of the proposed non-convex method for generic graphs. Furthermore, we present an ADMM-based algorithm to solve the proposed method and establish its convergence. Numerical experiments are conducted on both synthetic and real-world data for denoising, support recovery, event detection, and semi-supervised classification.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here