Video Coding for Machines with Feature-Based Rate-Distortion Optimization

11 Mar 2022  ·  Kristian Fischer, Fabian Brand, Christian Herglotz, André Kaup ·

Common state-of-the-art video codecs are optimized to deliver a low bitrate by providing a certain quality for the final human observer, which is achieved by rate-distortion optimization (RDO). But, with the steady improvement of neural networks solving computer vision tasks, more and more multimedia data is not observed by humans anymore, but directly analyzed by neural networks. In this paper, we propose a standard-compliant feature-based RDO (FRDO) that is designed to increase the coding performance, when the decoded frame is analyzed by a neural network in a video coding for machine scenario. To that extent, we replace the pixel-based distortion metrics in conventional RDO of VTM-8.0 with distortion metrics calculated in the feature space created by the first layers of a neural network. Throughout several tests with the segmentation network Mask R-CNN and single images from the Cityscapes dataset, we compare the proposed FRDO and its hybrid version HFRDO with different distortion measures in the feature space against the conventional RDO. With HFRDO, up to 5.49 % bitrate can be saved compared to the VTM-8.0 implementation in terms of Bj{\o}ntegaard Delta Rate and using the weighted average precision as quality metric. Additionally, allowing the encoder to vary the quantization parameter results in coding gains for the proposed HFRDO of up 9.95 % compared to conventional VTM.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods