Viral Marketing in Social Networks with Competing Products

25 Dec 2023  ·  Ahad N. Zehmakan, Xiaotian Zhou, Zhongzhi Zhang ·

Consider a directed network where each node is either red (using the red product), blue (using the blue product), or uncolored (undecided). Then in each round, an uncolored node chooses red (resp. blue) with some probability proportional to the number of its red (resp. blue) out-neighbors. What is the best strategy to maximize the expected final number of red nodes given the budget to select $k$ red seed nodes? After proving that this problem is computationally hard, we provide a polynomial time approximation algorithm with the best possible approximation guarantee, building on the monotonicity and submodularity of the objective function and exploiting the Monte Carlo method. Furthermore, our experiments on various real-world and synthetic networks demonstrate that our proposed algorithm outperforms other algorithms. Additionally, we investigate the convergence time of the aforementioned process both theoretically and experimentally. In particular, we prove several tight bounds on the convergence time in terms of different graph parameters, such as the number of nodes/edges, maximum out-degree and diameter, by developing novel proof techniques.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here