Visual Context-aware Convolution Filters for Transformation-invariant Neural Network

15 Jun 2019  ·  Suraj Tripathi, Abhay Kumar, Chirag Singh ·

We propose a novel visual context-aware filter generation module which incorporates contextual information present in images into Convolutional Neural Networks (CNNs). In contrast to traditional CNNs, we do not employ the same set of learned convolution filters for all input image instances. Our proposed input-conditioned convolution filters when combined with techniques inspired by Multi-instance learning and max-pooling, results in a transformation-invariant neural network. We investigated the performance of our proposed framework on three MNIST variations, which covers both rotation and scaling variance, and achieved 1.13% error on MNIST-rot-12k, 1.12% error on Half-rotated MNIST and 0.68% error on Scaling MNIST, which is significantly better than the state-of-the-art results. We make use of visualization to further prove the effectiveness of our visual context-aware convolution filters. Our proposed visual context-aware convolution filter generation framework can also serve as a plugin for any CNN based architecture and enhance its modeling capacity.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.