Wasserstein Distributionally Robust Kalman Filtering

We study a distributionally robust mean square error estimation problem over a nonconvex Wasserstein ambiguity set containing only normal distributions. We show that the optimal estimator and the least favorable distribution form a Nash equilibrium. Despite the non-convex nature of the ambiguity set, we prove that the estimation problem is equivalent to a tractable convex program. We further devise a Frank-Wolfe algorithm for this convex program whose direction-searching subproblem can be solved in a quasi-closed form. Using these ingredients, we introduce a distributionally robust Kalman filter that hedges against model risk.

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here