Wasserstein Graph Distance Based on $L_1$-Approximated Tree Edit Distance between Weisfeiler-Lehman Subtrees

9 Jul 2022  ·  Zhongxi Fang, Jianming Huang, Xun Su, Hiroyuki Kasai ·

The Weisfeiler-Lehman (WL) test is a widely used algorithm in graph machine learning, including graph kernels, graph metrics, and graph neural networks. However, it focuses only on the consistency of the graph, which means that it is unable to detect slight structural differences. Consequently, this limits its ability to capture structural information, which also limits the performance of existing models that rely on the WL test. This limitation is particularly severe for traditional metrics defined by the WL test, which cannot precisely capture slight structural differences. In this paper, we propose a novel graph metric called the Wasserstein WL Subtree (WWLS) distance to address this problem. Our approach leverages the WL subtree as structural information for node neighborhoods and defines node metrics using the $L_1$-approximated tree edit distance ($L_1$-TED) between WL subtrees of nodes. Subsequently, we combine the Wasserstein distance and the $L_1$-TED to define the WWLS distance, which can capture slight structural differences that may be difficult to detect using conventional metrics. We demonstrate that the proposed WWLS distance outperforms baselines in both metric validation and graph classification experiments.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods