What takes the brain so long: Object recognition at the level of minimal images develops for up to seconds of presentation time

9 Jun 2020  ·  Hanna Benoni, Daniel Harari, Shimon Ullman ·

Rich empirical evidence has shown that visual object recognition in the brain is fast and effortless, with relevant brain signals reported to start as early as 80 ms. Here we study the time trajectory of the recognition process at the level of minimal recognizable images (termed MIRC). These are images that can be recognized reliably, but in which a minute change of the image (reduction by either size or resolution) has a drastic effect on recognition. Subjects were assigned to one of nine exposure conditions: 200, 500, 1000, 2000 ms with or without masking, as well as unlimited time. The subjects were not limited in time to respond after presentation. The results show that in the masked conditions, recognition rates develop gradually over an extended period, e.g. average of 18% for 200 ms exposure and 45% for 500 ms, increasing significantly with longer exposure even above 2 secs. When presented for unlimited time (until response), MIRC recognition rates were equivalent to the rates of full-object images presented for 50 ms followed by masking. What takes the brain so long to recognize such images? We discuss why processes involving eye-movements, perceptual decision-making and pattern completion are unlikely explanations. Alternatively, we hypothesize that MIRC recognition requires an extended top-down process complementing the feed-forward phase.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here