X-LXMERT: Paint, Caption and Answer Questions with Multi-Modal Transformers

Mirroring the success of masked language models, vision-and-language counterparts like ViLBERT, LXMERT and UNITER have achieved state of the art performance on a variety of multimodal discriminative tasks like visual question answering and visual grounding. Recent work has also successfully adapted such models towards the generative task of image captioning... (read more)

PDF Abstract EMNLP 2020 PDF EMNLP 2020 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
ViLBERT
Representation Learning