Zero-shot Event Detection using Multi-modal Fusion of Weakly Supervised Concepts

Current state-of-the-art systems for visual content analysis require large training sets for each class of interest, and performance degrades rapidly with fewer examples. In this paper, we present a general framework for the zeroshot learning problem of performing high-level event detection with no training exemplars, using only textual descriptions... This task goes beyond the traditional zero-shot framework of adapting a given set of classes with training data to unseen classes. We leverage video and image collections with free-form text descriptions from widely available web sources to learn a large bank of concepts, in addition to using several off-the-shelf concept detectors, speech, and video text for representing videos. We utilize natural language processing technologies to generate event description features. The extracted features are then projected to a common high-dimensional space using text expansion, and similarity is computed in this space. We present extensive experimental results on the large TRECVID MED corpus to demonstrate our approach. Our results show that the proposed concept detection methods significantly outperform current attribute classifiers such as Classemes, ObjectBank, and SUN attributes. Further, we find that fusion, both within as well as between modalities, is crucial for optimal performance. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here