ZM-Net: Real-time Zero-shot Image Manipulation Network

21 Mar 2017 Hao Wang Xiaodan Liang Hao Zhang Dit-yan Yeung Eric P. Xing

Many problems in image processing and computer vision (e.g. colorization, style transfer) can be posed as 'manipulating' an input image into a corresponding output image given a user-specified guiding signal. A holy-grail solution towards generic image manipulation should be able to efficiently alter an input image with any personalized signals (even signals unseen during training), such as diverse paintings and arbitrary descriptive attributes... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet