no code implementations • NeurIPS 2023 • Karolis Martinkus, Jan Ludwiczak, Kyunghyun Cho, Wei-Ching Liang, Julien Lafrance-Vanasse, Isidro Hotzel, Arvind Rajpal, Yan Wu, Richard Bonneau, Vladimir Gligorijevic, Andreas Loukas
We introduce AbDiffuser, an equivariant and physics-informed diffusion model for the joint generation of antibody 3D structures and sequences.
no code implementations • 18 Jul 2023 • Andreas Loukas, Pan Kessel, Vladimir Gligorijevic, Richard Bonneau
In silico screening uses predictive models to select a batch of compounds with favorable properties from a library for experimental validation.
1 code implementation • 8 Jun 2023 • Nathan C. Frey, Daniel Berenberg, Karina Zadorozhny, Joseph Kleinhenz, Julien Lafrance-Vanasse, Isidro Hotzel, Yan Wu, Stephen Ra, Richard Bonneau, Kyunghyun Cho, Andreas Loukas, Vladimir Gligorijevic, Saeed Saremi
We resolve difficulties in training and sampling from a discrete generative model by learning a smoothed energy function, sampling from the smoothed data manifold with Langevin Markov chain Monte Carlo (MCMC), and projecting back to the true data manifold with one-step denoising.
no code implementations • 8 Oct 2022 • Ji Won Park, Samuel Stanton, Saeed Saremi, Andrew Watkins, Henri Dwyer, Vladimir Gligorijevic, Richard Bonneau, Stephen Ra, Kyunghyun Cho
Bayesian optimization offers a sample-efficient framework for navigating the exploration-exploitation trade-off in the vast design space of biological sequences.
no code implementations • 1 Dec 2016 • Vladimir Gligorijevic, Yannis Panagakis, Stefanos Zafeiriou
Networks have been a general tool for representing, analyzing, and modeling relational data arising in several domains.