Search Results for author: Weng Lam Tam

Found 3 papers, 3 papers with code

Parameter-Efficient Prompt Tuning Makes Generalized and Calibrated Neural Text Retrievers

2 code implementations14 Jul 2022 Weng Lam Tam, Xiao Liu, Kaixuan Ji, Lilong Xue, Xingjian Zhang, Yuxiao Dong, Jiahua Liu, Maodi Hu, Jie Tang

By updating only 0. 1% of the model parameters, the prompt tuning strategy can help retrieval models achieve better generalization performance than traditional methods in which all parameters are updated.

Retrieval Text Retrieval

P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks

2 code implementations14 Oct 2021 Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, Jie Tang

Prompt tuning, which only tunes continuous prompts with a frozen language model, substantially reduces per-task storage and memory usage at training.

Language Modelling

Cannot find the paper you are looking for? You can Submit a new open access paper.