Image-text matching

100 papers with code • 1 benchmarks • 1 datasets

Image-Text Matching is a subtask within Cross-Modal Retrieval (CMR) that involves establishing associations between images and corresponding textual descriptions. The goal is to retrieve an image given a textual query or, conversely, retrieve a textual description given an image query. This task is challenging due to the heterogeneity gap between image and text data representations. Image-text matching is used in applications such as content-based image search, visual question answering, and multimodal summarization.

Assessing Brittleness of Image-Text Retrieval Benchmarks from Vision-Language Models Perspective

Libraries

Use these libraries to find Image-text matching models and implementations
2 papers
10,654

Most implemented papers

AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

taoxugit/AttnGAN CVPR 2018

In this paper, we propose an Attentional Generative Adversarial Network (AttnGAN) that allows attention-driven, multi-stage refinement for fine-grained text-to-image generation.

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

salesforce/lavis 28 Jan 2022

Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision.

UNITER: UNiversal Image-TExt Representation Learning

ChenRocks/UNITER ECCV 2020

Different from previous work that applies joint random masking to both modalities, we use conditional masking on pre-training tasks (i. e., masked language/region modeling is conditioned on full observation of image/text).

VinVL: Revisiting Visual Representations in Vision-Language Models

pzzhang/VinVL CVPR 2021

In our experiments we feed the visual features generated by the new object detection model into a Transformer-based VL fusion model \oscar \cite{li2020oscar}, and utilize an improved approach \short\ to pre-train the VL model and fine-tune it on a wide range of downstream VL tasks.

Stacked Cross Attention for Image-Text Matching

kuanghuei/SCAN ECCV 2018

Prior work either simply aggregates the similarity of all possible pairs of regions and words without attending differentially to more and less important words or regions, or uses a multi-step attentional process to capture limited number of semantic alignments which is less interpretable.

Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

salesforce/lavis NeurIPS 2021

Most existing methods employ a transformer-based multimodal encoder to jointly model visual tokens (region-based image features) and word tokens.

Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks

microsoft/Oscar ECCV 2020

Large-scale pre-training methods of learning cross-modal representations on image-text pairs are becoming popular for vision-language tasks.

VL-BERT: Pre-training of Generic Visual-Linguistic Representations

jackroos/VL-BERT ICLR 2020

We introduce a new pre-trainable generic representation for visual-linguistic tasks, called Visual-Linguistic BERT (VL-BERT for short).

Structure-CLIP: Towards Scene Graph Knowledge to Enhance Multi-modal Structured Representations

zjukg/structure-clip 6 May 2023

In this paper, we present an end-to-end framework Structure-CLIP, which integrates Scene Graph Knowledge (SGK) to enhance multi-modal structured representations.

Dual Attention Networks for Multimodal Reasoning and Matching

iammrhelo/pytorch-vqa-dan CVPR 2017

We propose Dual Attention Networks (DANs) which jointly leverage visual and textual attention mechanisms to capture fine-grained interplay between vision and language.