Search Results for author: Erik Buhmann

Found 7 papers, 6 papers with code

EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion

no code implementations29 Sep 2023 Erik Buhmann, Cedric Ewen, Darius A. Faroughy, Tobias Golling, Gregor Kasieczka, Matthew Leigh, Guillaume Quétant, John Andrew Raine, Debajyoti Sengupta, David Shih

In addition, we introduce \epcfm, the first permutation equivariant continuous normalizing flow (CNF) for particle cloud generation.

CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation

1 code implementation11 Sep 2023 Erik Buhmann, Frank Gaede, Gregor Kasieczka, Anatolii Korol, William Korcari, Katja Krüger, Peter McKeown

We further distill the diffusion model into a consistency model allowing for accurate sampling in a single step and resulting in a $46\times$ ($37\times$ over CaloClouds) speed-up.

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation

2 code implementations8 May 2023 Erik Buhmann, Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka, Anatolii Korol, William Korcari, Katja Krüger, Peter McKeown

Simulating showers of particles in highly-granular detectors is a key frontier in the application of machine learning to particle physics.

EPiC-GAN: Equivariant Point Cloud Generation for Particle Jets

1 code implementation17 Jan 2023 Erik Buhmann, Gregor Kasieczka, Jesse Thaler

With the vast data-collecting capabilities of current and future high-energy collider experiments, there is an increasing demand for computationally efficient simulations.

Generative Adversarial Network Point Cloud Generation

Shared Data and Algorithms for Deep Learning in Fundamental Physics

1 code implementation1 Jul 2021 Lisa Benato, Erik Buhmann, Martin Erdmann, Peter Fackeldey, Jonas Glombitza, Nikolai Hartmann, Gregor Kasieczka, William Korcari, Thomas Kuhr, Jan Steinheimer, Horst Stöcker, Tilman Plehn, Kai Zhou

We introduce a Python package that provides simply and unified access to a collection of datasets from fundamental physics research - including particle physics, astroparticle physics, and hadron- and nuclear physics - for supervised machine learning studies.

BIG-bench Machine Learning Transfer Learning

Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed

2 code implementations11 May 2020 Erik Buhmann, Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka, Anatolii Korol, Katja Krüger

Accurate simulation of physical processes is crucial for the success of modern particle physics.

Instrumentation and Detectors High Energy Physics - Experiment High Energy Physics - Phenomenology Data Analysis, Statistics and Probability

Cannot find the paper you are looking for? You can Submit a new open access paper.