A Computer Vision-assisted Approach to Automated Real-Time Road Infrastructure Management

27 Feb 2022  ·  Philippe Heitzmann ·

Accurate automated detection of road pavement distresses is critical for the timely identification and repair of potentially accident-inducing road hazards such as potholes and other surface-level asphalt cracks. Deployment of such a system would be further advantageous in low-resource environments where lack of government funding for infrastructure maintenance typically entails heightened risks of potentially fatal vehicular road accidents as a result of inadequate and infrequent manual inspection of road systems for road hazards. To remedy this, a recent research initiative organized by the Institute of Electrical and Electronics Engineers ("IEEE") as part of their 2020 Global Road Damage Detection ("GRDC") Challenge published in May 2020 a novel 21,041 annotated image dataset of various road distresses calling upon academic and other researchers to submit innovative deep learning-based solutions to these road hazard detection problems. Making use of this dataset, we propose a supervised object detection approach leveraging You Only Look Once ("YOLO") and the Faster R-CNN frameworks to detect and classify road distresses in real-time via a vehicle dashboard-mounted smartphone camera, producing 0.68 F1-score experimental results ranking in the top 5 of 121 teams that entered this challenge as of December 2021.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods