Given the progress in image recognition with recent data driven paradigms, it's still expensive to manually label a large training data to fit a convolutional neural network (CNN) model. This paper proposes a hybrid supervised-unsupervised method combining a pre-trained AlexNet with Latent Dirichlet Allocation (LDA) to extract image topics from both an unlabeled life-logging dataset and the COCO dataset... (read more)
PDF Abstract