A Kernel Loss for Solving the Bellman Equation

NeurIPS 2019 Yihao FengLihong LiQiang Liu

Value function learning plays a central role in many state-of-the-art reinforcement-learning algorithms. Many popular algorithms like Q-learning do not optimize any objective function, but are fixed-point iterations of some variant of Bellman operator that is not necessarily a contraction... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper