A Novel Low-cost FPGA-based Real-time Object Tracking System

16 Apr 2018 Peng Gao Ruyue Yuan Zhicong Lin Linsheng Zhang Yan Zhang

In current visual object tracking system, the CPU or GPU-based visual object tracking systems have high computational cost and consume a prohibitive amount of power. Therefore, in this paper, to reduce the computational burden of the Camshift algorithm, we propose a novel visual object tracking algorithm by exploiting the properties of the binary classifier and Kalman predictor... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet