A real-time distributed post-disaster restoration planning strategy for distribution networks

18 May 2021  ·  Jianfeng Fu, Alfredo Nunez, Bart De Schutter ·

After disasters, distribution networks have to be restored by repair, reconfiguration, and power dispatch. During the restoration process, changes can occur in real time that deviate from the situations considered in pre-designed planning strategies. That may result in the pre-designed plan to become far from optimal or even unimplementable. This paper proposes a centralized-distributed bi-level optimization method to solve the real-time restoration planning problem. The first level determines integer variables related to routing of the crews and the status of the switches using a genetic algorithm (GA), while the second level determines the dispatch of active/reactive power by using distributed model predictive control (DMPC). A novel Aitken- DMPC solver is proposed to accelerate convergence and to make the method suitable for real-time decision making. A case study based on the IEEE 123-bus system is considered, and the acceleration performance of the proposed Aitken-DMPC solver is evaluated and compared with the standard DMPC method.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here