Acceleration through Optimistic No-Regret Dynamics

NeurIPS 2018  ·  Jun-Kun Wang, Jacob Abernethy ·

We consider the problem of minimizing a smooth convex function by reducing the optimization to computing the Nash equilibrium of a particular zero-sum convex-concave game. Zero-sum games can be solved using online learning dynamics, where a classical technique involves simulating two no-regret algorithms that play against each other and, after $T$ rounds, the average iterate is guaranteed to solve the original optimization problem with error decaying as $O(\log T/T)$. In this paper we show that the technique can be enhanced to a rate of $O(1/T^2)$ by extending recent work \cite{RS13,SALS15} that leverages \textit{optimistic learning} to speed up equilibrium computation. The resulting optimization algorithm derived from this analysis coincides \textit{exactly} with the well-known \NA \cite{N83a} method, and indeed the same story allows us to recover several variants of the Nesterov's algorithm via small tweaks. We are also able to establish the accelerated linear rate for a function which is both strongly-convex and smooth. This methodology unifies a number of different iterative optimization methods: we show that the \HB algorithm is precisely the non-optimistic variant of \NA, and recent prior work already established a similar perspective on \FW \cite{AW17,ALLW18}.

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods