Action Assembly: Sparse Imitation Learning for Text Based Games with Combinatorial Action Spaces

23 May 2019  ·  Chen Tessler, Tom Zahavy, Deborah Cohen, Daniel J. Mankowitz, Shie Mannor ·

We propose a computationally efficient algorithm that combines compressed sensing with imitation learning to solve text-based games with combinatorial action spaces. Specifically, we introduce a new compressed sensing algorithm, named IK-OMP, which can be seen as an extension to the Orthogonal Matching Pursuit (OMP). We incorporate IK-OMP into a supervised imitation learning setting and show that the combined approach (Sparse Imitation Learning, Sparse-IL) solves the entire text-based game of Zork1 with an action space of approximately 10 million actions given both perfect and noisy demonstrations.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here