Active Semi-supervised Transfer Learning (ASTL) for Offline BCI Calibration

12 May 2018  ·  Dongrui Wu ·

Single-trial classification of event-related potentials in electroencephalogram (EEG) signals is a very important paradigm of brain-computer interface (BCI). Because of individual differences, usually some subject-specific calibration data are required to tailor the classifier for each subject. Transfer learning has been extensively used to reduce such calibration data requirement, by making use of auxiliary data from similar/relevant subjects/tasks. However, all previous research assumes that all auxiliary data have been labeled. This paper considers a more general scenario, in which part of the auxiliary data could be unlabeled. We propose active semi-supervised transfer learning (ASTL) for offline BCI calibration, which integrates active learning, semi-supervised learning, and transfer learning. Using a visual evoked potential oddball task and three different EEG headsets, we demonstrate that ASTL can achieve consistently good performance across subjects and headsets, and it outperforms some state-of-the-art approaches in the literature.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here