Active Testing: An Efficient and Robust Framework for Estimating Accuracy

ICML 2018  ·  Phuc Nguyen, Deva Ramanan, Charless Fowlkes ·

Much recent work on visual recognition aims to scale up learning to massive, noisily-annotated datasets. We address the problem of scaling- up the evaluation of such models to large-scale datasets with noisy labels. Current protocols for doing so require a human user to either vet (re-annotate) a small fraction of the test set and ignore the rest, or else correct errors in annotation as they are found through manual inspection of results. In this work, we re-formulate the problem as one of active testing, and examine strategies for efficiently querying a user so as to obtain an accu- rate performance estimate with minimal vetting. We demonstrate the effectiveness of our proposed active testing framework on estimating two performance metrics, Precision@K and mean Average Precision, for two popular computer vision tasks, multi-label classification and instance segmentation. We further show that our approach is able to save significant human annotation effort and is more robust than alternative evaluation protocols.

PDF Abstract ICML 2018 PDF ICML 2018 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here