Adaptive Adversarial Attack on Scene Text Recognition

Recent studies have shown that state-of-the-art deep learning models are vulnerable to the inputs with small perturbations (adversarial examples). We observe two critical obstacles in adversarial examples: (i) Strong adversarial attacks (e.g., C&W attack) require manually tuning hyper-parameters and take a long time to construct an adversarial example, making it impractical to attack real-time systems; (ii) Most of the studies focus on non-sequential tasks, such as image classification, yet only a few consider sequential tasks... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet