Adaptive Super-Twisting Controller Design for Accurate Trajectory Tracking Performance of Unmanned Aerial Vehicles

In this paper, an adaptive super-twisting controller is designed for an agile maneuvering quadrotor unmanned aerial vehicle to achieve accurate trajectory tracking in the presence of external disturbances. A cascaded control architecture is designed to determine the desired accelerations using the proposed controller and subsequently used to compute the desired orientation and angular rates. The finite-time convergence of sliding functions and closed-loop system stability are analytically proven. Furthermore, the restrictive assumption on the maximum variation of the disturbance is relaxed by designing a gain adaptation law and low-pass filtering of the estimated equivalent control. The proper selection of design parameters is discussed in detail. Finally, the effectiveness of the proposed method is evaluated by high-fidelity software-in-the-loop simulations and validated by experimental studies.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here