Adversarial Attacks and Defenses on 3D Point Cloud Classification: A Survey

1 Jul 2023  ·  Hanieh Naderi, Ivan V. Bajić ·

Deep learning has successfully solved a wide range of tasks in 2D vision as a dominant AI technique. Recently, deep learning on 3D point clouds is becoming increasingly popular for addressing various tasks in this field. Despite remarkable achievements, deep learning algorithms are vulnerable to adversarial attacks. These attacks are imperceptible to the human eye but can easily fool deep neural networks in the testing and deployment stage. To encourage future research, this survey summarizes the current progress on adversarial attack and defense techniques on point cloud classification.This paper first introduces the principles and characteristics of adversarial attacks and summarizes and analyzes adversarial example generation methods in recent years. Additionally, it provides an overview of defense strategies, organized into data-focused and model-focused methods. Finally, it presents several current challenges and potential future research directions in this domain.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here