Active, Continual Fine Tuning of Convolutional Neural Networks for Reducing Annotation Efforts

3 Feb 2018  ·  Zongwei Zhou, Jae Y. Shin, Suryakanth R. Gurudu, Michael B. Gotway, Jianming Liang ·

The splendid success of convolutional neural networks (CNNs) in computer vision is largely attributable to the availability of massive annotated datasets, such as ImageNet and Places. However, in medical imaging, it is challenging to create such large annotated datasets, as annotating medical images is not only tedious, laborious, and time consuming, but it also demands costly, specialty-oriented skills, which are not easily accessible. To dramatically reduce annotation cost, this paper presents a novel method to naturally integrate active learning and transfer learning (fine-tuning) into a single framework, which starts directly with a pre-trained CNN to seek "worthy" samples for annotation and gradually enhances the (fine-tuned) CNN via continual fine-tuning. We have evaluated our method using three distinct medical imaging applications, demonstrating that it can reduce annotation efforts by at least half compared with random selection.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here