An Efficient Approach for Anomaly Detection in Traffic Videos

20 Apr 2021  ·  Keval Doshi, Yasin Yilmaz ·

Due to its relevance in intelligent transportation systems, anomaly detection in traffic videos has recently received much interest. It remains a difficult problem due to a variety of factors influencing the video quality of a real-time traffic feed, such as temperature, perspective, lighting conditions, and so on. Even though state-of-the-art methods perform well on the available benchmark datasets, they need a large amount of external training data as well as substantial computational resources. In this paper, we propose an efficient approach for a video anomaly detection system which is capable of running at the edge devices, e.g., on a roadside camera. The proposed approach comprises a pre-processing module that detects changes in the scene and removes the corrupted frames, a two-stage background modelling module and a two-stage object detector. Finally, a backtracking anomaly detection algorithm computes a similarity statistic and decides on the onset time of the anomaly. We also propose a sequential change detection algorithm that can quickly adapt to a new scene and detect changes in the similarity statistic. Experimental results on the Track 4 test set of the 2021 AI City Challenge show the efficacy of the proposed framework as we achieve an F1-score of 0.9157 along with 8.4027 root mean square error (RMSE) and are ranked fourth in the competition.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here