An Incremental Clustering Method for Anomaly Detection in Flight Data

20 May 2020  ·  Weizun Zhao, Lishuai Li, Sameer Alam, Yanjun Wang ·

Safety is a top priority for civil aviation. New anomaly detection methods, primarily clustering methods, have been developed to monitor pilot operations and detect any risks from such flight data. However, all existing anomaly detection methods are offlline learning - the models are trained once using historical data and used for all future predictions. In practice, new flight data are accumulated continuously and analyzed every month at airlines. Clustering such dynamically growing data is challenging for an offlline method because it is memory and time intensive to re-train the model every time new data come in. If the model is not re-trained, false alarms or missed detections may increase since the model cannot reflect changes in data patterns. To address this problem, we propose a novel incremental anomaly detection method based on Gaussian Mixture Model (GMM) to identify common patterns and detect outliers in flight operations from digital flight data. It is a probabilistic clustering model of flight operations that can incrementally update its clusters based on new data rather than to re-cluster all data from scratch. It trains an initial GMM model based on historical offlline data. Then, it continuously adapts to new incoming data points via an expectation-maximization (EM) algorithm. To track changes in flight operation patterns, only model parameters need to be saved. The proposed method was tested on three sets of simulation data and two sets of real-world flight data. Compared with the traditional offline GMM method, the proposed method can generate similar clustering results with significantly reduced processing time (57 % - 99 % time reduction in testing sets) and memory usage (91 % - 95 % memory usage reduction in testing sets). Preliminary results indicate that the incremental learning scheme is effective in dealing with dynamically growing data in flight data analytics.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here