An Integrated Optimization + Learning Approach to Optimal Dynamic Pricing for the Retailer with Multi-type Customers in Smart Grids

18 Dec 2016Fanlin MengXiao-Jun ZengYan ZhangChris J. DentDunwei Gong

In this paper, we consider a realistic and meaningful scenario in the context of smart grids where an electricity retailer serves three different types of customers, i.e., customers with an optimal home energy management system embedded in their smart meters (C-HEMS), customers with only smart meters (C-SM), and customers without smart meters (C-NONE). The main objective of this paper is to support the retailer to make optimal day-ahead dynamic pricing decisions in such a mixed customer pool... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet