Applying Generative Adversarial Networks to Intelligent Subsurface Imaging and Identification

30 May 2019William Rice

To augment training data for machine learning models in Ground Penetrating Radar (GPR) data classification and identification, this thesis focuses on the generation of realistic GPR data using Generative Adversarial Networks. An innovative GAN architecture is proposed for generating GPR B-scans, which is, to the author's knowledge, the first successful application of GAN to GPR B-scans... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.