Boosting Anomaly Detection Using Unsupervised Diverse Test-Time Augmentation

29 Oct 2021  ·  Seffi Cohen, Niv Goldshlager, Lior Rokach, Bracha Shapira ·

Anomaly detection is a well-known task that involves the identification of abnormal events that occur relatively infrequently. Methods for improving anomaly detection performance have been widely studied. However, no studies utilizing test-time augmentation (TTA) for anomaly detection in tabular data have been performed. TTA involves aggregating the predictions of several synthetic versions of a given test sample; TTA produces different points of view for a specific test instance and might decrease its prediction bias. We propose the Test-Time Augmentation for anomaly Detection (TTAD) technique, a TTA-based method aimed at improving anomaly detection performance. TTAD augments a test instance based on its nearest neighbors; various methods, including the k-Means centroid and SMOTE methods, are used to produce the augmentations. Our technique utilizes a Siamese network to learn an advanced distance metric when retrieving a test instance's neighbors. Our experiments show that the anomaly detector that uses our TTA technique achieved significantly higher AUC results on all datasets evaluated.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods