Chefbot: A Novel Framework for the Generation of Commonsense-enhanced Responses for Task-based Dialogue Systems

INLG (ACL) 2021  ·  Carl Strathearn, Dimitra Gkatzia ·

Conversational systems aim to generate responses that are accurate, relevant and engaging, either through utilising neural end-to-end models or through slot filling. Human-to-human conversations are enhanced by not only the latest utterance of the interlocutor, but also by recalling relevant information about concepts/objects covered in the dialogue and integrating them into their responses... Such information may contain recent referred concepts, commonsense knowledge and more. A concrete scenario of such dialogues is the cooking scenario, i.e. when an artificial agent (personal assistant, robot, chatbot) and a human converse about a recipe. We will demo a novel system for commonsense enhanced response generation in the scenario of cooking, where the conversational system is able to not only provide directions for cooking step-by-step, but also display commonsense capabilities by offering explanations of how objects can be used and provide recommendations for replacing ingredients. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here