Contextual Policy Transfer in Reinforcement Learning Domains via Deep Mixtures-of-Experts

29 Feb 2020Michael GimelfarbScott SannerChi-Guhn Lee

In reinforcement learning, agents that consider the context, or current state, when selecting source policies for transfer have been shown to outperform context-free approaches. However, none of the existing approaches transfer knowledge contextually from model-based learners to a model-free learner... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet